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Abstract. We consider chiral perturbation theory in the meson sector at order E6. In the terminology of
the external field technique, the genuine two–loop diagrams so generated are of the sunset type. We discuss
the evaluation of several of these in the case where the masses of the particles running in the loops are
equal. In particular, we present integral representations that are suitable for the evaluation of diagrams in
kinematical regions where branch points and cuts are present.

1 Introduction

In the framework of chiral perturbation theory (CHPT)
[1], Green functions are expanded in powers of the external
momenta and of the light quark masses. The generating
functional is constructed by use of an effective lagrangian
and requires the evaluation of tree graphs at leading order,
one–loop graphs at next–to–leading order, and two–loop
graphs at next–to–next–to–leading order. In this article,
we describe the evaluation of several two–loop graphs in
the equal mass case.

The first complete two–loop calculation in CHPT was
performed in [2], in order to investigate the apparent dis-
crepancy of the one–loop prediction [3] of the cross section
γγ → π0π0 with the data [4]. The topologies of the two–
loop graphs considered in [2] contain the ones in

− vector and axialvector two–point functions
− π → eνγ
− scalar and vector form factors of the pion
− ππ → ππ
− γγ → π+π−

(1)

In other words, knowing how to evaluate the two–loop
graphs in γγ → π0π0 allows one to calculate those that
occur in (1) in the equal mass case. There are other Green
functions where the two–loop graphs have the same topol-
ogy as (1), e.g. ππ → 4π or γ → 4π. The external mo-
menta in those processes are, however, in a different kine-
matical region than in (1), and the integral representations
worked out below do not apply.

The evaluation of the two–loop integrals in (1) is not
straightforward for several reasons: i) CHPT being a low–
energy expansion, one has to keep all masses at their phys-
ical values – the zero mass limit would result in a poor
approximation of the matrix element. ii) The interaction
is of the derivative type, which generates polynomials of
high degree in the numerator of the loop–integrals. iii) In

general, one needs the loop–functions in a region where
branch points and cuts are present.

Since the work of [2], additional two–loop calculations
have been performed. In the two flavour sector, these are
the amplitudes for γγ → π+π− [5], π → eνγ [6] and ππ →
ππ [7]. In the three flavour sector, there exist calculations
of the vector [8] and axialvector [9] two–point functions,
and of a combination of vector form factors [10]. For a
review of these calculations, we refer the reader to [11].

The calculational methods developed in [2] were ap-
plied in [5–7,9,12]. As these techniques were never made
public in a coherent manner, we wish to do so here. At the
same time, we use the opportunity to simplify the origi-
nally used calculational tools.

We are, of course, aware that this is not the first pub-
lication on two–loop integrals. Nevertheless, we feel that
it would be inappropriate to give an overview of what has
been previously done in this field, because those calcula-
tions are, as far as we can judge, mostly unrelated to what
we aim at here. Indeed, in contrast to e.g. the evaluation
of two–loop integrals in the framework of the Standard
Model, where very different mass scales occur, the present
article deals with applications in SU(2) × SU(2) CHPT,
where the masses are equal. Furthermore, there is only a
limited number of two–loop graphs that will ever need to
be calculated. We expect that the techniques presented
below will be useful in this restricted framework, because
they represent a coherent method to deal with quite differ-
ent topologies. In addition, the same methods can also be
applied in chiral SU(3)×SU(3) – where the masses are dif-
ferent – see [9] for the self–energy graph. To give another
illustration, we expect that the two–loop graphs in Kl4
decays at order E6 can be worked out with these methods
in a straightforward (yet admittedly tedious) manner.

The article is organized as follows. In Sect. 2, we elu-
cidate the structure of the terms at order E6 in the chiral
expansion, in particular the role of the two–loop diagrams.
The following sections are devoted to the evaluation of the
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Fig. 1a–e. Contributions to the generating functional at order
E6. The solid–dash lines denote the propagator in the presence
of the external fields. Filled circles (filled squares) denote ver-
tices from the effective lagrangians L2 (L4) in (2). The open
square in e stands for vertices from L6. Only the sunset dia-
gram a generates genuine two–loop integrals

self–energy (Sect. 3), the vertex (Sect. 4), the box (Sect. 5)
and the acnode diagram (Sect. 6). Section 7 contains the
summary and concluding remarks. The notation is given
in appendix A, whereas appendix B contains one–loop in-
tegrals. The divergences are evaluated and tabulated in
appendix C.

2 The diagrams at order E6

The effective lagrangian of QCD in the meson sector con-
sists of a string of terms,

Leff = L2 + h̄L4 + h̄2L6 + · · · , (2)

where tree graphs with LN generate polynomial contri-
butions of order EN in the energy expansion. These la-
grangians contain external sources which allow one to eval-
uate the transition amplitudes with the background field
method. The path integral representation of the generat-
ing functional is

eiZ/h̄ =
∫

[dU ]ei/h̄
∫

dx Leff ,

where [dU ] denotes the chiral invariant measure. The low–
energy representation

Z = Z2 + h̄Z4 + h̄2Z6 + · · ·

p

l1

l2

p

Fig. 2. The self–energy diagram. The filled circles denote ver-
tices from the effective lagrangian L2 in (2). The internal lines
stand for scalar propagators with mass 1

is obtained by expanding the lagrangians LI around the
solution of the classical equation of motion δ

∫
dx L2 = 0

and carrying out the path integral to the required order
in h̄. The diagrams which generate the terms of order E6

are collected in Z6 and displayed in Fig. 1. The solid–dash
lines stand for the propagator in the presence of the exter-
nal fields. Full circles (full squares) denote vertices from
L2 (L4), whereas the open square stands for a vertex from
L6. The diagrams at order E6 for a specific process are ob-
tained by attaching the external lines in all possible ways
to these graphs. Examples are the self–energy, the vertex,
the box and the acnode diagram considered below (Figs. 2,
3, 4 and 5, respectively).

Figure 1a collects all genuine two–loop diagrams. It
is seen that, in the language of the external field tech-
nique, these are of the sunset type. The Figs. 1b–e dis-
play diagrams that amount to products of two one–loop
integrals, to products of a one–loop integral with a tree
graph contribution from L4, to one–loop graphs with L4,
or to tree graphs alone. In the following, we reserve the
term ”two–loop integral” to contributions from the sunset
graph Fig. 1a. [There are Green functions with no sun-
set contributions at order E6 – e.g., the vector two–point
functions [8]. The evaluation of these matrix elements then
simplifies accordingly.]

In the following, we outline the evaluation of the two–
loop diagrams that occur in the process γγ → π0π0 in the
two flavour case, with equal mass for the particles running
in the loops.

3 The self–energy

We evaluate contributions from the self–energy diagram
that is displayed in Fig. 2. The case where the masses of
the particles running in the loops are not identical is dis-
cussed e.g. in [13] with a technique that is very different
from the one proposed in this work. References to earlier
work on the sunset graph may be found in [13], see also
[14].
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We consider the integrals1

(H;Hµ;Hµν) =

〈〈
( 1; lµ1 ; lµ1 lν1 )

3∏
i=1

1
Di

〉〉
, (3)

with

D1 = 1 − l21 , D2 = 1 − l22 , D3 = 1 − (p − l1 − l2)2 . (4)

Integration over l2 generates the loop–function

J(t) = C(w)Γ (−w)
∫ 1

0
dx [1 − tx(1 − x)]w ,

t = (p − l1)2 . (5)

The function J(t) is analytic in the complex t−plane, cut
along the positive real axis for t ≥ 4. We insert the Cauchy
representation [15]

J(t) =
∫ ∞

4

[dσ]
σ − t

; −1.5 < w < 0 , (6)

and integrate over l1. In this manner, we obtain by use of
the formulae in appendix B

(H;Hµ) =
∫ ∞

4
[dσ] {F2[z2] ; (1 − x)F2[z2] pµ}1 ,

Hµν =
1
2

∫ ∞

4
[dσ]

{
2(1 − x)2F2[z2] pµpν

−F1[z2] gµν}1 ,

z2 = (1 − s(1 − x))x + σ(1 − x) ; s = p2 . (7)

The integration over the variable σ in (7) converges in the
strip

−1.5 < Re w < −1 .

Using partial integration in x for the last term in Hµν ,
the nontrivial integrals in (7) reduce to∫ ∞

4
[dσ] {(1 − x)mF2[z2]}1 . (8)

It remains to extract the finite and infinite parts in
(8) as w → 0. We subtract and add the first two terms of
the Taylor series of F2[z2] around s = 1. The finite part
becomes ∫ ∞

4
dσβ {(1 − x)mK2(x, σ; s)}1 , (9)

where we have introduced the kernel

K2(x, σ; s) = − 1
(16π2)2

×
{

ln
z2

zs=1
2

+ (s − 1)
x(1 − x)

zs=1
2

}
. (10)

It vanishes at s = 1, together with its first derivative,

K2(x, σ; 1) = K′
2(x, σ; 1) = 0 ,

1 The notation is given in appendix A

and dies off rapidly at large values for σ,

K2 = O

(
1
σ2

)
, σ → ∞ .

The infinite part of (8) may be expressed in terms of the
quantities

D(m, n) =
∫ ∞

4
[dσ] {(1 − x)mFn[y]}1 ,

y = x2 + σ(1 − x) , (11)

that are evaluated and tabulated in appendix C. As an
illustration of the method, we consider the scalar integral
H(s). The subtracted function

H(s) = H(s) − H(1) − (s − 1)H ′(1)

stays finite as w → 0,

H(s) =
∫ ∞

4
dσβ {K2(x, σ; s)}1 . (12)

The poles at w = 0 are contained in H(1) and in H ′(1),

H(1) = D(0, 2)

= −C2(w)Γ 2(−w)
{

3
2

− 17
4

w +
59
8

w2 + O(w3)
}

,

H ′(1) = 2 {D(1, 3) − D(2, 3)}
= −C2(w)Γ 2(−w)

{
1
4
w +

3
8
w2 + O(w3)

}
. (13)

The representation (12) is well suited for numerical eval-
uation at s < 9 only. In the region s > 9, H(s) develops
an imaginary part. At d = 4,

ImH(s) =
π

s(16π2)2

∫ (
√

s−1)2

4
dσβ[s − (

√
σ + 1)2]1/2

×[s − (
√

σ − 1)2]1/2 . (14)

As a result, one has the dispersion relation

H(s) =
(s − 1)2

π

∫ ∞

9

dz ImH(z)
(z − 1)2(z − s)

, (15)

that allows one to evaluate H also at s > 9. A similar
remark applies to the Lorentz invariant components of the
tensorial integrals Hµ and Hµν .

4 The vertex

4.1 Tensorial integrals

Here we consider the vertex diagram Fig. 3 that leads to
the integrals 〈〈

( 1 ; lµ1 ; lµ1 lν1 )
4∏

i=1

1
Di

〉〉
, (16)
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Q

l1

l2

p1

p2

Fig. 3. The vertex diagram. The filled circles denote vertices
from the effective lagrangian L2 in (2). The double external line
denotes a current of momentum Q, e.g. one scalar or two elec-
tromagnetic currents (contact term). The internal lines stand
for scalar propagators with mass 1

with

D1 = 1 − l21 , D2 = 1 − (Q − l1)2 ,

D3 = 1 − l22 , D4 = 1 − (l2 + l1 − p1)2 ,

Q = p1 + p2 , p2
1 = p2

2 = 1 . (17)

Integration over l2 gives the loop–function J(t̄) with t̄ =
(p1 − l1)2, that we represent in the dispersive manner
(6). We subtract the emerging subdivergence by writing
J(t̄) = J(0) + J̄(t̄). The contribution from J(0) generates
a nonlocal divergence that is removed by the usual renor-
malization procedure. We do not consider this piece any
further and concentrate on the remainder,

(V ; V µ ; V µν) =
∫ ∞

4

[dσ]
σ

〈
(1 ; lµ1 ; lµ1 lν1 ) t̄

D1D2(σ − t̄)

〉
. (18)

We collect the denominators by F [D1D2(σ − t̄)] and re-
name the Feynman parameters for later convenience,

x1, x2 → x2, x3 ,

such that

(V ; V µ ; V µν) =
∫ ∞

4

[dσ]
σ

{〈
(1; lµ1 ; lµ1 lν1 )t̄

[z3 − (l1 − R)2]3

〉}
23

,

z3 = σ(1 − x3) + x2
3y2 ,

y2 = 1 − sx2(1 − x2) ,

R = (1 − x2)x3Q + (1 − x3)p1 ,

s = Q2 = 2p1Q = 2p2Q . (19)

After the shift l1 → l1+R the momentum integration may
be performed with (B1), and the tensors V µ, V µν can be
expressed in terms of the scalar integrals

Vm[P ; s] =
∫ ∞

4

[dσ]
σ

{P (x2, x3)Fm[z3]}23 , (20)

where P (x2, x3) is a polynomial in x2, x3, and where the
argument s in Vm[P ; s] denotes the s–dependence of z3.
This procedure automatically generates the tensorial
structure in the external momenta. The integrals (20) can

be decomposed into the convergent integral V3[P ; s] and
the divergent polynomials V1[P ; 0] , V2[P ; 0] by use of the
recursion relation

Vm[P ; s] = Vm[P1(1, x3); 0]
+mVm+1[s[x2

3(2x2 − 1)]P1; s] ,

P1(x2, x3) =
∫ x2

0
P (y, x3)dy , (21)

obtained from (20) by partial integration in x2. Finally,
V1[P ; 0] and V2[P ; 0] may be expressed in terms of the
integrals

E(m, n) =
∫ ∞

4

[dσ]
σ

{(1 − x)mFn[y]}1 ,

y = x2 + σ(1 − x) , (22)

that are evaluated and tabulated in appendix C. In the
following subsection we illustrate the procedure in case of
the scalar integral V (s).

4.2 The scalar integral

Performing the above described procedure, the scalar in-
tegral V (s) becomes

V (s) = V3[Ps; s] − (w + 2) {E(0, 2) − E(1, 2)} ,

Ps = x2
3{y2 + s(w + 2)(1 − 2x2)x2} . (23)

As w → 0, the finite part is

Vf (s) = lim
w→0

V3[Ps; s] =
∫ ∞

4

βdσ

σ
v(s, σ) ,

v(s, σ) =
1

(16π2)2

∫ 1

0
(1 + sx2(1 − 3x2))dx2

×
∫ 1

0

x3
3dx3

z3
. (24)

For γγ → ππ , this representation is not well suited, be-
cause Vf contains a branch point at s = 4, and the physical
region for γγ → ππ is s ≥ 4. This branch point manifests
itself in a zero in the denominator of the integrand in (24)
along the curve z3 = 0 in the square 0 ≤ x2, x3 ≤ 1. One
may solve the problem by writing a dispersion relation for
Vf . Using

1
z3

= P (
1
z3

) + iπδ(z3) (25)

for s → s + i0+, we obtain

Imv(s, σ) =
π

(16π2)2

∫ x2+

x2−

dx2x
3
3+

1 + sx2(1 − 3x2)
Wσ

,

s > 4 ,

x2± =
1
2
(1 ± (1 − 4/s)1/2) ,

x3+ =
1

2y2
(σ − Wσ) , Wσ = (σ2 − 4σy2)1/2 , (26)
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from where

v(s, σ) =
1
π

∫ ∞

4

dz

z − s
Imv(z, σ) .

Integration over σ gives

Vf (s) =
1
π

∫ ∞

4

dz

z − s

∫ ∞

4

dσ

σ
β Imv(z, σ) . (27)

The function Vf may be expressed in terms of elementary
functions [16,7],

Vf (s) =
1

(16π2)2

[(
3 − π2

3sρ2

)
f +

1
2ρ2 f2 − 1

3sρ4 f3

+
25
4

+
π2

6

]
, (28)

with

f = ρ

{
ln

1 − ρ

1 + ρ
+ iπ

}
; ρ =

√
1 − 4/s , s > 4 .(29)

Corresponding expressions hold for any V3[P ; s]. In the
evaluation of the matrix element for e.g. the process γγ →
ππ , V3 also occurs in the box diagrams considered below.
Due to the algebraic complexity of the expressions en-
countered, it may be more useful to use representations
analogous to (27). They allow for an efficient algebraic
treatment. The triple integrals required are in any case
considerably easier to evaluate than the four–dimensional
ones used in the box diagrams discussed below.

5 The box

We consider integrals of the type〈〈
lµ1
1 . . . lµN

1

5∏
i=1

1
Di

〉〉
, (30)

with

D1 = 1 − l21 , D2 = 1 − (l1 + q1)2 ,

D3 = 1 − (l1 − q2)2 ,

D4 = 1 − l22 , D5 = 1 − (l2 + l1 + q1 − p1)2 . (31)

These are generated by the diagram Fig. 4. We consider
the case

q1 + q2 = p1 + p2 , p2
1 = p2

2 = 1 , q2
1 = q2

2 = 0 ,

that is relevant for the process γγ → ππ . Similarly to
the vertex diagram considered in the previous section, in-
tegration over l2 leads us to consider the tensors

Bµ1...µN =
∫ ∞

4

[dσ]
σ

〈lµ1
1 . . . lµN

1
t̄

σ − t̄

3∏
i=1

1
Di

〉 ,

t̄ = (p1 − q1 − l1)2 , (32)

l1 l2

p1

p2

q1

q2

Fig. 4. The box diagram. The filled circles denote vertices
from the effective lagrangian L2 in (2). The wavy lines stand
for the electromagnetic current. The internal lines stand for
scalar propagators with mass 1

where we again have dropped the nonlocal singularity gen-
erated by J(0). The parametrization F [D2D1D3(σ − t̄)]
gives

Bµ1...µN =
∫ ∞

4

[dσ]
σ

(33){〈
lµ1
1 . . . lµN

1
t̄

[z4 − (l1 + δ)2]4

〉}
123

,

with

z4 = B − Ax1 ,

A = x2x3 {s(1 − x2)x3 + (1 − t)(1 − x3)} ≡ x2x3Ā ,

B = A + z3 = x2
3 + x2x3(1 − x3)(1 − t) + σ(1 − x3) ,

δ = q1x1x2x3 − q2x3(1 − x2) + (q1 − p1)(1 − x3) ,

s = (p1 + p2)2, t = (p1 − q1)2 . (34)

The quantity z3 has already occurred in the vertex dia-
gram, see (19). With the shift l1 → l1 − δ, the momentum
integrations are easily done by use of (B1), and the tensors
Bµ1...µN may be expressed in terms of the scalar integrals

Bm[P ; s, t] =
∫ ∞

4

[dσ]
σ

{P (x1, x2, x3)Fm[z4]}123 ,(35)

where P (x1, x2, x3) is a polynomial in x1, x2, x3, and
where the arguments s, t in Bm[P ; s, t] denote the s, t de-
pendence of z4. These integrals are convergent at w = 0
for m ≥ 3. We reduce the divergent integrals to the case
m = 3 by use of the recursion relation

Bm[P ; s, t] = Vm[3x2x3P1(1, x2, x3); s]
−mBm+1[AP1(x1, x2, x3); s, t] ,

P1(x1, x2, x3) =
∫ x1

0
dy P (y, x2, x3) . (36)

This relation is obtained from (35) by partial integration
in x1. The vertex functions Vm have been discussed above,
and it remains to determine B3,4. In the kinematical re-
gion where z4 6= 0, these functions may be obtained from
(35) via a four–dimensional integration. In the physical
region for the process γγ → ππ , however, z4 vanishes
on a two–dimensional surface embedded in the hypercube
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0 ≤ x1, x2, x3 ≤ 1. Analogous singularities occur in the
physical region for γπ → γπ. These zeros in z4 generate
branch points at s = 4 and at t = 9. We therefore use
again a Cauchy representation, and consider the region
t < 9, where it suffices to use a fixed–t representation –
the region t > 9 might then e.g. be reached by use of a
Mandelstam representation. We illustrate the procedure
for

G(s, t) = lim
w→0

B3[P ; s, t] =
∫ ∞

4

dσ

σ
βg(σ; s, t) ,

g =
1

2(16π2)2

{
P (x1, x2, x3)

z4

}
123

. (37)

By use of (25), with z3 → z4, we obtain for the disconti-
nuity of g

discsg(σ; s, t) .= g(σ; s + i0+, t) − g(σ; s + i0−, t)

=
6πi

(16π2)2

∫ x2+

x2−

dx2

∫ 1

x3+

x3

Ā

×P

(
B

A
, x2, x3

)
dx3 , (38)

where x2± , x3+ are given in (26). Therefore,

G(s, t) =
1

2πi

∫ ∞

4

dz

z − s

∫ ∞

4

dσ

σ
β discsg(σ; z, t) . (39)

In case that the polynomial P contains the variable s,
one has to make sure to generate the correct asymptotic
behaviour through the dispersive representation. It may
be necessary to pull out factors of s in the numerator
before doing the dispersive integral – it is in any case
useful to check the dispersive representation in a region
free of cuts by use of (35). Analogous expressions can be
obtained for B4, e.g. by first integrating over x1 and then
again using (25).

6 The acnode

We consider the tensorial integral

Aµν =

〈〈
lµ1 lν2

5∏
i=1

1
Di

〉〉
, (40)

that is generated by the acnode diagram Fig. 5, with

D1 = 1 − l21 , D2 = 1 − (l1 + q1)2 , D3 = 1 − l22 ,

D4 = 1 − (l2 + q2)2 , D5 = 1 − (l2 − l1 + p1 − q1)2 ,

q1 + q2 = p1 + p2 ,

q2
1 = q2

2 = 0, p2
1 = p2

2 = 1 . (41)

The first step in the calculation [17] is to employ the Feyn-
man parametrization as F [D1D2]F [D4D3] such that

Aµν =
∫ 1

0
dx1

∫ 1

0
dx2

×
〈〈

(l1 − (1 − x1)q1)µ(l2 − x2q2)ν

(1 − l21)2(1 − l22)2(1 − (l1 − l2 + k)2)

〉〉
,

k = x1q1 + x2q2 − p1 . (42)

p1

q1

q2

p2

l1

l2

Fig. 5. The acnode diagram. The filled circles denote vertices
from the effective lagrangian L2 in (2). The wavy lines stand
for the electromagnetic current. The internal lines stand for
scalar propagators with mass 1

The integrals ddl1 can now be performed once the denom-
inators (1− l21)

2 and (1− (l1 − l2 +k)2) are combined. The
result is proportional to∫ 1

0
dx3 x3

[(1 − x3)(l2 − k)µ − (1 − x1) qµ
1 ]

[1 − x3(1 − x3)(l2 − k)2]1−w
.

The integrals ddl2 can be done by combining

(1 − l22)
2([x3(1 − x3)]−1 − (l2 − k)2)1−w

in the standard manner. The expression Aµν then consists
of a convergent part proportional to tensors built from the
external momenta, and a divergent piece proportional to
gµν . The convergent part is easy to evaluate numerically
in the physical region for γγ → ππ, because it does not
contain branch points there. In case one wishes to evaluate
these terms e.g. at (q1 − p1)2 ≥ 9, one may again write a
dispersion relation for the form factors in question. Here,
we concentrate on the term proportional to gµν ,

Aµν = A0g
µν + · · · ,

A0 = −C2(w)Γ (−2w)
1
2

∫ 1

0
d4x[x3(1 − x3)]−w

×x4(1 − x4)−w z5
2w ,

(43)

where

z5 = 1 − x4 + x3(1 − x3)x4
{
1 − (1 − x4)k2} . (44)

Expanding the integrand in powers of w, we find

A0 = C(w)2Γ (−w)2
w

16
(2 + 7w)

+
1

2(16π2)2

∫ 1

0
d4x x4 ln z5 + O(w) . (45)

7 Summary and conclusions

1. We have discussed in this article the two–loop dia-
grams that occur in the evaluation of the amplitudes
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γγ → π0π0 in the equal mass case. These are the self–
energy, the vertex, the box and the acnode graphs,
displayed in Figs. 2–5. These are also all the two–loop
graphs occurring in the processes listed in (1).

2. We first discuss our results for the self–energy, the ver-
tex and the box graphs. These diagrams contain, as a
subgraph, the one–loop function2

J(t) =
〈

1
(1 − l21)

1
(1 − (l1 − p)2

〉
; t = p2 ,

that we represent in a dispersive manner,

J(t) =
∫ ∞

4

[dσ]
σ − t

.

As a result, they may be represented in d dimensions
as linear combinations of the following integrals:

Γ (−w − n)
∫ ∞

4
[dσ]{P1z

w+n
2 }1 Fig. 2 (self–energy)

Γ (−w − n)
∫ ∞

4

[dσ]
σ

{
P2z

w+n
3

}
23 Fig. 3 (vertex)

Γ (−w − n)
∫ ∞

4

[dσ]
σ

{
P3z

w+n
4

}
123 Fig. 4 (box)

Here, n denotes an integer, and Pk are polynomials in
k Feynman parameters. The zi are polynomials in the
external momenta, in the Feynman parameters and in
σ.

3. The vertex and box integrals receive further contri-
butions, that contain a nonlocal singularity which is
generated by a divergent subdiagram. These contri-
butions are cancelled by the standard renormalization
procedure, and we have not considered them further
here.

4. In order to recover the finite and infinite parts in the
vertex and in the box diagrams at w → 0, we have
performed partial integrations in the Feynman param-
eters, reducing in this manner the exponent in zw+n

i .
The finite parts are obtained by reducing the exponent
to n = −1, while the surface terms generated by par-
tial integration produce the divergences. In the case of
the self–energy diagram, one does not obtain a finite
result in this manner. We have instead subtracted the
first two terms of the Taylor series expansion of zw

2
around s = 1.

5. In this manner, we are able to express all divergences
in terms of the integrals

{D(m, n) ; E(m, n)} =
∫ ∞

4
[dσ]

{
1 ;

1
σ

}
× {(1 − x)mFn[y]}1 ,

where

y = x2 + σ(1 − x) ; m = 0, 1, 2 . . . ; n = 1, 2, 3 . . .

2 For the notation, see appendix A

We evaluate and tabulate these quantities in appendix
C.

6. In the physical region for γγ → π0π0, the vertex and
box diagram develop branch points and cuts, as a re-
sult of which the above representation for the finite
part is not appropriate. We instead write fixed–t dis-
persion relations. We provide an integral representa-
tion for the required absorptive part in each case.

7. The vertex diagrams can be given in closed form [16,
7]. The algebraic complexities in the case of γγ → ππ
suggest, however, that it may sometimes be simpler to
keep them in the form of the integral representations
provided here. Needless to say that this decision is a
matter of taste.

8. Finally, we come to the acnode diagram, shown in
Fig. 5. Instead of presenting the originally used [2,5]
method, we evaluate it here along lines that are similar
to the ones suggested in [17] for the decay η → π0γγ.
The kinematics in γγ → π0π0 allows for a substan-
tially simpler procedure than the one needed in [17].

9. We conclude that, with these methods at hand, one is
able to calculate many processes at two–loop order in
the framework of chiral perturbation theory.
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Appendix

A Notation

To simplify the notation, we set the pion masses equal to
one,

Mπ± = Mπ0 = 1 .

As is customary, we use dimensional regularization and
put

w =
d

2
− 2 ,

where d denotes the dimension of space-time. Loop inte-
grations are symbolized by a bracket,

〈. . .〉 =
∫

ddl1
i(2π)d

(. . .) ,

〈〈. . .〉〉 =
∫

ddl1
i(2π)d

∫
ddl2

i(2π)d
(. . .) . (A1)

We combine denominators with

[a1 . . . aN ]−1 =
∫

[dx]N−1[a1x1 . . . xN−1
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+a2x2 . . . xN−1(1 − x1)
+a3x3 . . . xN−1(1 − x2)
...
+aN (1 − xN−1)]−N

≡ F [a1 . . . aN ]. (A2)

Here [dx]N stands for the normalized measure

[dx]N = N !
N∏

ν=1

θ[xν(1 − xν)]xν−1
ν dxν ,

∫
[dx]N = 1 , (A3)

and θ(x) denotes the step function. We abbreviate multi-
ple Feynman integrals by

{. . .}1 =
∫ 1

0
dx{. . .} ,

{. . .}23 = 2
∫ 1

0
dx2

∫ 1

0
x3dx3{. . .} ,

{. . .}123 = 6
∫ 1

0
dx1

∫ 1

0
x2dx2

∫ 1

0
x2

3dx3{. . .} . (A4)

Furthermore, we use the measure

[dσ] =
C(w)Γ (3/2)
Γ (3/2 + w)

(
σ

4
− 1)wβ dσ , (A5)

with

C(w) =
1

(4π)2+w
, β = (1 − 4/σ)1/2 , (A6)

and

lim
w→0

[dσ] =
β

16π2 dσ . (A7)

B One–loop integrals

In the text we use the loop–functions〈
1

[z − l21]m

〉
= Fm[z] ,〈

lµ1 lν1
[z − l21]m

〉
= − gµν

2(m − 1)
Fm−1[z] ,〈

lµ1 lν1 lρ1lσ1
[z − l21]m

〉
=

gµνgρσ + cycl.
4(m − 1)(m − 2)

Fm−2[z] . (B1)

They are given by

Fm[z] = zw+2−mC(w)
Γ (m − 2 − w)

Γ (m)
, m ≥ 1 . (B2)

In particular,

(F1 ; F2 ; F3 ; F4) = zw C(w)

×
(

Γ (−1 − w)z ; Γ (−w) ;
Γ (1 − w)

2z
;

Γ (2 − w)
6z2

)
.

(B3)

We also use

J(t) =
〈

1
1 − l21

1
1 − (l1 − p)2

〉
; t = p2 , (B4)

with

J(0) = C(w)Γ (−w) . (B5)

C The integrals D(m, n) and E(m, n)

Here we consider the integrals

{D(m, n) ; E(m, n)} =
∫ ∞

4
[dσ]

{
1 ;

1
σ

}

×
∫ 1

0
dx (1 − x)mFn[y] (C1)

where

y = x2 + σ(1 − x) ; m = 0, 1, 2 . . . , n = 1, 2, 3 . . .

In particular, we determine the divergent parts in D(m, n
≤ 3) and in E(m, n ≤ 2). By partial integration in x, we
obtain the recursion relation

(3+w+m−n)D(m, n) =
Γ (n−w−2)Q(w + 2 − n)

Γ (n)Γ (−w)
−n {D(m, n + 1)−D(m + 2, n + 1)} , (C2)

with

Q(α) = C(w)Γ (−w)
∫ ∞

4
[dσ] σα

= C2(w)Γ (−w)Γ (−1 − w − α)
Γ (−α)
Γ (−2α)

. (C3)

An analogous relation holds for E(m, n) , with Q(w +
2 − n) → Q(w + 1 − n). One may use these recursion
relations to express D(m ≥ 1, n ≤ 3) and E(m, n ≤ 2)
through the divergent quantities Q and the convergent
integrals D(m ≥ 1, 4) and E(m, 3). The case D(0, n) must
be treated separately, see below.

C.1 Explicit expressions for D(m, n)

Let

D(m, n) = C2(w)Γ 2(−w) {p(m, n, 0) + wp(m, n, 1)
+w2p(m, n, 2) + O(w3)

}
. (C4)

For m ≥ 1, we proceed as described above and find

p(m, 1, 0) = (m2 + 4m + 5)m(m + 4)N4,

p(m, 1, 1) = −(2m7 + 29m6 + 172m5 + 540m4 + 964m3

+951m2 + 430m + 36)m(m + 4)N2
4 ,

p(m, 1, 2) = {m(m + 1)D(m + 6) − 3m(m + 3)D(m + 4)
+ 3(m + 1)(m + 4)D(m + 2)
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−(m + 3)(m + 4)D(m)} N4

+
(
3m12 + 74m11 + 812m10 + 5230m9

+21938m8 + 62724m7 + 123986m6

+167682m5 + 149409m4 + 81146m3

+ 23372m2 + 3456m + 864
)
m(m + 4)N3

4 ,

p(m, 2, 0) = −m(m + 2)N2,

p(m, 2, 1) = (2m3 + 7m2 + 7m + 1)m(m + 2)N2
2 ,

p(m, 2, 2) = {mD(m + 4) − 2(m + 1)D(m + 2)
+(m + 2)D(m)} N2

− (
4m6 + 26m5 + 61m4 + 63m3 + 27m2

+4m + 2)m(m + 2)N3
2

p(m, 3, 0) = 0,

p(m, 3, 1) = −1/(4m),
p(m, 3, 2) = {D(m + 2) − D(m)} /(2m)

−(2m − 1)/(4m2), (C5)

where

N−1
2 = m(m + 1)(m + 2), N−1

4 = N−1
2 (m + 3)(m + 4),

D(m) =
∫ ∞

4
dσβ

∫ 1

0

dx(1 − x)m

{x2 + σ(1 − x)}2

=
∫ 1

0
dx

xm−1

(1 − x)2

(
1 +

2x

1 − x2 lnx

)
. (C6)

For example,

D(1) = (π2 − 4)/16, D(2) = −(π2 − 12)/16,

D(3) = −(13π2 − 132)/48 . (C7)

In Table 1, we display some of the coefficients p(m, n, k) for
convenience. We now turn to D(0, n) which is divergent for
any n. The recursion relation (C2) allows one to evaluate
D(0, 1) and D(0, 3) from

D(0, 2) = C(w)Γ (−w)
∫ ∞

4
[dσ]

×
∫ 1

0
dx

(
x2 + σ(1 − x)

)w
, (C8)

and from D(m ≥ 2, n). In order to evaluate D(0, 2), we
add and subtract from the integrand in (C8) the quantity

4 = (x + σ(1 − x))w − wx

σ
(σ(1 − x))w

.

The integral

C(w)Γ (−w)
∫ ∞

4
[dσ]

∫ 1

0
dx

(
(x2 + σ(1 − x))w − 4)

(C9)

is finite at w = 0, whereas the divergence is contained in

C(w)Γ (−w)
∫ ∞

4
[dσ]

∫ 1

0
dx 4 . (C10)

In this manner, we obtain the values p(0, n ≤ 3, k) dis-
played in Table 1.

Table 1. The coefficients p(m, n, k)

m n p(m, n, 0) p(m, n, 1) p(m, n, 2)

0 1 13
12 − 469

144
10445
1728

1 1 5
12 − 781

720
78121
43200

2 1 17
60 − 2389

3600
233857
216000

0 2 − 3
2

17
4 − 59

8

1 2 − 1
2

17
12 − 59

24

2 2 − 1
3

59
72 − 1333

864

0 3 1
4 − 1

2 −π2

6 + 1

1 3 0 − 1
4 −π2

6 + 5
4

2 3 0 − 1
8 −π2

6 + 23
16

3 3 0 − 1
12 −π2

6 + 3
2

4 3 0 − 1
16 −π2

6 + 883
576

C.2 Explicit expressions for E(m, n)

Let

E(m, n) = C2(w)Γ 2(−w) {q(m, n, 0) + wq(m, n, 1)
+w2q(m, n, 2) + O(w3)

}
. (C11)

Proceeding in the manner described above, we find

q(m, 1, 0) = (m2 + 4m + 2)N3,

q(m, 1, 1) = −(3m5 + 31m4 + 124m3 + 235m2 + 205m

+64)N2
3 ,

q(m, 1, 2) = {(m + 1)E(m + 4) − 2(m + 2)E(m + 2)
+(m + 3)E(m)} N3 +

(
7m8 + 115m7

+802m6 + 3097m5 + 7230m4

+ 10425m3 + 9041m2 + 4295m + 848
)
N3

3 ,

q(m, 2, 0) = N1/2,

q(m, 2, 1) = (2m + 1)N2
1 /2,

q(m, 2, 2) = {E(m + 2) − E(m)} N1

+(4m2 + 6m + 3)N3
1 /2, (C12)

where

N−1
1 = (m + 1), N−1

3 = N−1
1 (m + 2)(m + 3),

E(m) =
∫ ∞

4

dσ

σ
β

∫ 1

0

dx(1 − x)m

x2 + σ(1 − x)

= −
∫ 1

0
dx

xm

(1 − x)2

(
2 +

1 + x

1 − x
lnx

)
. (C13)
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Table 2. The coefficients q(m, n, k)

m n q(m, n, 0) q(m, n, 1) q(m, n, 2)

0 1 1
3 − 16

9
223
54

1 1 7
24 − 331

288
9011
3456

2 1 7
30 − 1499

1800
206087
108000

0 2 1
2

1
2

2π2

3 − 11
2

1 2 1
4

3
8

2π2

3 − 93
16

2 2 1
6

5
18

2π2

3 − 325
54

3 2 1
8

7
32

2π2

3 − 7073
1152

4 2 1
10

9
50

2π2

3 − 27983
4500

For example

E(0) =
1
2
, E(1) =

π2 − 9
6

, E(2) =
4π2 − 39

6
. (C14)

For convenience, we display some of the coefficients
q(m, n, k) in Table 2.
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